Scribe Notes-Security Lecture II
Brian Ciopyk

Access Control Goals:

· Privacy: no data leaks out

· Integrity: no unwanted data leaks in

· Trust (more difficult to enforce than the others)

· Sharing: despite the enforced security on the network, users must still be able to get work done

Techniques:

· Access Control Lists (ACL)

· For each principal, aka. Independent user (P)

· For each object of data (O)

· For each access type to that object, there is a bit representing if a user can gain access to the object

Drawbacks:

· This method is inefficient because it requires POA bits to represent all of the access types in the system. These must be maintained by the system administrator and this difficult task is doomed to human error. Mistakes will be common and there are two distinct types of mistakes:

· Denying access to a user who should be able to gain access. These are a hassle but once the system administrator is alerted to the problem, they can easily fix it

· Granting access to a user who shouldn’t be able to gain access. These mistakes are more difficult to catch because the user may not notice that they have excessive rights in the system for some time. More importantly, if that user is malicious, they would probably never alert the issue to the system admin and use the additional access to harm the network.

· When an object is added, the sys admin must specify the ACL for that object, principal or access

UNIX Model

· Objects are files, principals are UNIX users and accesses are rwx (Readable Writable eXecutable)
· Below we see how the accesses are represented in UNIX

[image: image1.emf]sub sgb sb r w x

user

r w x

group

r w x

other

Key:

sub: setuid bit. Short for SET User ID upon execution. This is an access flag that allows users to run an executable. When this bit is set for an executable, the process running the executable is granted the access of the owner. This allows the user to access files and directories that may only be accessible to the owner.

sgb: setgid bit. Short for Set Group ID upon execution. This is similar to the setuid bit except it grants the user’s group the same permissions as the owner’s group. When this bit is applied to a directory, files created in the directory belong to the owner of the directory, not the creating process. Hence, any user who has writable and executable privileges in that directory can create files there but those files belong to the owner of the directory.
sb: sticky bit. This sticky bit protects files in a directory. When the sticky bit is applied to a directory, a file can only be deleted by the file owner, the directory owner or a privileged user. This helps protect the files in the directory from being deleted by unauthorized users. Setting the sticky bit also tells the kernel to keep that file/directory in swap space or RAM, increasing the efficiency of that file/directory. Please note that this usage is somewhat outdated.
As we can see, UNIX sets different privileges to the owner of files/directories, the owners group and everyone else. Performing a “ls –l” on a directory will display all of the files and their respective privileges. Next, we examine the ACL of other operating systems, specifically Windows NT, Solaris and Samba:

Access Control Lists of Windows NT, etc:

[image: image2.emf]eggert rwx kuo r-x ta r-x other --x

· Above we see an example of the ACL used by these operating systems. Based directly off the UNIX model but associated with each object is a list of object rights. Essentially, when a user requests access to a file, all files for which that user does not have access is searched first. If that file is found in the “access denied” list, then the user is immediately denied access. Next, the list is searched for all “access granted” files. If the file is found in there, then the user is given access. The basic operations of the Windows NT ACL were not covered in class but if you would like more information on the topic, including functions associated with it, click here.
SEASNET:
· By default, the SEASNET ACL mimics the UNIX model. Executing a getfacl command will display the file name, owner, group and the ACL

· To modify the ACL, you can execute a setfacl command from the command line

Although the ACL’s used by UNIX and Windows NT (plus aforementioned operating systems) work, there is another approach to creating Access Control Lists:

Role Based Access Control:

· This type of ACL is used by Oracle, Solaris and Active Directory, as well as others.

· There are many different types of roles (sysadmin, student, professors, etc.), each with their own access rights to the system.

· The access rights are tied to the role, not to the principal. Hence, you can lose or gain rights by assuming different roles. For example, on a heavily secured system, one role might allow you to access your email while another role might allow you to write code. Furthermore, another role might be needed to execute code. People are given roles based on their needs. Each session may have its own role

· This implementation of an ACL is commonly used for ops, not just objects. For example, on Solaris, you need a special role to execute an unlink command. Example: unlink(“dir/dir1”):

[image: image3.emf]/

dir

dir1

X

As we can see, Role Based ACL’s take a very different approach to security than our previous models. Still, there is another implementation of an ACL which we can examine;

Capabilities:

· Record, for each process, which objects it can access and which accesses are allowed.

· Capabilities are tokens of authority that refer to objects that point to a set of access rights associated with the process. All user processes must use a capability to access an object.

· They are similar to traditional ACL’s in the fact that capabilities need to unforgeable and must be examined on every access. Hence, OS/hardware support is needed.
· Capabilities are similar to file descriptors in UNIX. For example, you can have write access to an unwriteable file. Unlike file descriptors, capabilities can revoke permissions, although this is rather difficult to do.

Implementing Capabilities:

· There are two ways covered in class. First, you can have the OS maintain a table for each process and use syscalls to modify the table. This approach is unflexible, however. Another way is to use encryption but this method will only work if there are enough possibilities to make it almost impossible to decrypt the data from an unauthorized position.

[image: image4.emf]92173 110110

Encrypted

data

oid rights

encryption

Seen by user

process

If the user has the right capability, they can decrypt the information and gain access to the file.

Flaws in current UNIX security system;

· It is possible to “give away” file descriptors to unauthorized principals:

1. Fork() a process, cloning the file descriptor

2. Execvp(“progX”, …) setuid to anotherUser now that the process has a copy of the fd

· If progX is malicious, it can cause a lot of damage to the process which called it now that it has access to the file descriptor.

Some programs do need special rights, such as login():

1. First, login() prints a prompt to the screen

2. It reads the name and password

3. Checks that the entered password matches the correct one, if so:

4. Login becomes the user name, meaning that it has to call setuid(), a privileged syscall.

5. execvp(“/bin/sh/)

Other programs need special rights too, such as su, sudo and sendmail. sendmail, for example, has to be able to write to any arbitrary mailbox.
Care needs to be taken when using the setuid, setgid and sticky bits. For example, if both the setuid and the user executable bits are set, then a malicious user can cause damage to every user on a system.

These past two lectures begs the question, “What software can we actually trust?” It is very expensive to develop trusted software. Any software that is necessary to a system (kernel, security such as described above, etc.) need to be written by experienced developers, which is expensive in itself. Also, the developers need to be trusted and 3rd parties need to be brought in to test the code. Even code that is taken off the internet cannot be trusted and needs to be read, line by line, by an experiences programmer so as to be certain there are no flaws. In short, important code should never be taken off the internet and needs to be written from scratch. For more information on trust and software, please read Reflections on Trusting Trust, written by Ken Thompson, the creator of UNIX.
_1305750541.vsd
eggert

rwx

kuo

r-x

ta

r-x

other

--x

_1305750542.vsd
/

dir

dir1

X

_1305750543.vsd
92173

110110

Encrypted data

oid

rights

encryption

Seen by user process

_1305750539.vsd
sub

sgb

sb

r

w

x

user

r

w

x

group

r

w

x

other

